
Some Conjectures About Cyclotomic Integers 

By Raphael M. Robinson 

1. Introduction. Kronecker [2] proved in 1857 that the only algebraic integers 
which lie with their conjugates on the unit circle I z I = 1 are the roots of unity. 
If we consider instead the closed interior of the unit circle, I z I 9 1, then we allow 
only one additional algebraic integer, namely 0. But if we consider the set I z I < R, 
where R > 1, then infinitely many other algebraic integers appear. Indeed, by a 
theorem of Fekete and Szeg6 [1], there are infinitely many algebraic integers which 
lie with their conjugates in r ? I z 1 _ R, provided that 1 < r < R. 

What happens if we restrict our attention to cyclotomic integers, that is, to 
algebraic integers which lie in the field generated by all the roots of unity? Here the 
situation is quite different. If R < \/2, then no additional numbers appear; that is, 
the only cyclotomic integers which lie with their conjugates in I z I < \/2 are 0 and 
the roots of unity. (This is proved in ?2.) We wish to study what happens for larger 
values of R. Now if a lies with its conjugates in I z I : R, then the same is true of 
any conjugate of a multiplied by any root of unity. Hence, for this problem, we can 
consider two numbers as equivalent if one is a root of unity times a conjugate of 
the other. Denoting by 11 a 11 the maximum absolute value of the conjugates of a, 
what we said above was that any cyclotomic integer a with 11 a 11 < V/2 is either 
0 or a root of unity; in the latter case, a is equivalent to 1. 

I have made a numerical study of cyclotomic integers a with 11 a 3, as 
described in ?3. This study has suggested a number of problems and conjectures, 
several of which are stated below. Some evidence for the conjectures appears in 
??4,5. 

Problem 1. How can we tell whether there is any cyclotomic integer with a 
given absolute value? More generally, how can we find all the cyclotomic integers 
with this absolute value? Does it ever happen that there are infinitely many in- 
equivalent cyclotomic integers with the same absolute value? 

Problem 2. How can we tell whether a given cyclotomic integer can be expressed 
as a sum of a prescribed number of roots of unity? 

Conjecture 1. Any cyclotomic integer a with 11 a 11 < 2 is either the sum of two 
roots of unity, is equivalent to a number of the form (V/a + i>\b)/2, where a and 
b are positive integers, or is equivalent to one of the following three numbers: 

3 + \/13 + iV/(26 - 6V/13) * \/5 + 1 27r 1 + i/3 
4 2 7 2 

Conjecture 2. There are only a finite number of inequivalent cyclotomic integers 
with 11 a 11 < V\/5 which are not equivalent to a number of one of the following forms, 
where N is a positive integer: 

2 cos r/N, 1 + 2i cos 7i/N, V/5 cos ir/N + i sin 7r/N. 
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Conjecture 3. The numbers 1 + 2i cos xr/N and v5 cos xr/lN + i sin r/N are 
equivalent only for N = 2, 10, 30. 

Conjecture 4. If a is a cyclotonlic integer with 11 a 11 < /5, then either 11 a 11 has 
one of the forms 

2 cosir/N, /(1 + 4 cos2ir/N), 

where N is a positive integer, or else is equal to one of the two numbers 

V5 + x/13 \/7 + V/3 
2 ' 2 

Conjecture 5. The only cyclotomic integers satisfying a11 a /5 which are 
expressible as sums of three roots of unity are those equivalent to numbers of the 
forms 

2 cos ir/N, 1 + 2i cos 7r/N, 

where N is a positive integer, or to one of the five numbers 

1 + iV/7 /5 + i/3 2 _+ 1 + i__3 

2 '2 '7 2 

1 + e 2Xr13 + e8i/13, 1 + e2ri/24 + e147ri/24. 

2. Some Useful Formulas. Before describing the computation which was 
made, we prove a theorem and derive some useful formulas. In the first place, if a is 
a cyclotomic integer, then the conjugates of a a 

12 are I alil 12, where asj) runs through the 
conjugates of a. (However, distinct conjugates of a may not produce distinct con- 
jugates of I a 12.) Indeed, choose m so that a lies in the field R(v) obtained by ad- 
joining = el to the field of rational. The automorphisms of this field are defined 
by aj () Dj, where j runs through a reduced residue system mod m. Notice that 
aak - ajk = akffij. Also, v-1 = F = , hence -l,(z) - for any z in R(r). 
Thus 

a o~(o = ,(a~s) ) = (l(ajo) ) = (je) 

and so 

aj(l a 12) = o3(auz) = ao(a)ai(U) = of(a) aj(a) I ai(oa)12. 

The proof of this result depends on the fact that the automorphisms of the cyclo- 
tomic field R(r) commute. 

In particular, if a is a cyclotomic integer with 1s a 1 < 2, then the conjugates of 

Ia 12 all lie in [0, 4], and hence have the form 

2 + 2 cos 2kr/N [O < k < N/2, (k, N) =1], 

as shown by Kronecker [2]; see also [3]. It follows that 

ai V/(2 + 2cos2r/N) = 42 if N = 1, 
~2cos~r/N if N ? 2. 

Thus the smallest possible value of 11 a 11 which is greater than 1 is V/2. This proves 
the statement made in ?1 that if a is a cyclotomic integer with 11 a 1j < \/2, then 
a is 0 or a root of unity. 
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Are all these values of a possible? Yes, we can take 

a =2 cos r/1N = eirlN + e-JirI 

As we shall see in ?4, there are some values of N for which there are also other 
essentially different possibilities. But it is easily seen that if a is a sum of two roots 
of unity, then a must be equivalent to this number. 

Similarly, if a is a cyclotomic integer which lies with all of its conjugates in 
1 ? z I < /5, then the conjugates of I a I2 lie in [1, 5], and hence have the form 

3 + 2 cos 2k1wN [O _ k < N12, (k, N)=1]. 

It follows that 

11 a V=(3 + 2 cos 2irN) = /(1 + 4 cos2 r/N). 

Are all these values possible? Yes, for either of the following choices of a: 

a = 1 + 2i cos r1N, a = V/5 cos r1N + i sin r/NV. 

For some cases in which there are still other possibilities, see ?4. For discussion of a 
method of showing that these two choices are usually not equivalent, see ?5. 

Conversely, if Il a I = V/(3 + 2 cos 2ir/N), then the conjugates of I a 12 have the 
form 3 + 2 cos 2kr/N, and hence lie in [1, 5]. Thus if a cyclotomic integer a satis- 
fies 11 a 11 < \/5, then 11 a fl will fail to have the form mentioned if and only if some 
conjugate of a lies in I z I < 1. There are two cases given in ?4 where this happens, 
and in which 2 < 11 a 11 < /5. 

When can all the conjugates of a cyclotomic integer lie on a circle I z =R? 
Only if R2 has no other conjugates, that is, R12 is a rational integer q. Furthermore, 
these values are all possible, since we may take a = \q. Indeed, V\q is a cyclotomic 
integer, since the Gauss sum 

qE 21rik2/q fVq if q = 1 (mod 4), 
k=L e/ liVq if q 3 (mod 4), 

and e2rt'8 + e-2riI8 = V2, which enables us to handle the case when q is even. 
More generally, we can take a = (V/a + iN/b)/2, where a + b = 4q. The latter 

condition makes a 2 = q, and also insures that a is an algebraic integer, namely, a 
root of the equation (a2 + q)2 = aa2. In this way, we find a number of cyclotomic 
integers which lie with their conjugates on the circle I z = Vq. If q = qlq2, then 
we may also choose a, and a2 with I a,1 = V\ql and I a2 I= V/q2 , and put a = ala2 . 

3. The Computation. It is known that every cyclotomic integer a is a sum 
of roots of unity. (See, for example, Weiss [4, p. 264].) If a is a sum of n roots of 
unity, then of course 11 a 11 < n. Conversely, it appears likely that if 11 a 11 is small, 
then a can be expressed as a sum of a small number of roots of unity. Although I do 
not know any precise result in this direction, this assumption suggested the compu- 
tation described below. 

Using the IBM 7090 at the Computer Center of the University of California, 
Berkeley, during the period January-June 1964, I made a survey of cyclotomic 
integers expressed as sums of n mth roots of unity, which covered the following 
cases: 
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n = 3, m < 240; n = 4, m < 90; n=5, m < 50; n = 6, m < 30. 

(However, certain suns of six 27th roots were lost by being "reduced" to sums of 
five 54th roots, as explained at the end of this section.) In each case, the value of 
11 a 11 was computed, and those cases with 11 a 11 < 3 were determined. We shall con- 
sider in this paper only the cases in which 1 a 11 < \/5. 

If a is a sum of n mth roots of unity, then we may put 

of 
I 

I+ { 12 
+ . . . +r, 

where r = eTtIm. To cover all sums of n mth roots, it is sufficient to allow 
11, 12, X . ' In to vary independently over complete residue systems mod m. How- 
ever, this is redundant. How much can we restrict the number of cases? We may use 
the fact that a is equivalent to any conjugate 

a!) _ ill + (ji2 + + vjl' 

where (j, m) = 1, and also to a(j) multiplied by any root of unity. 
In the first place, we may suppose that not all of the differences 18 - ir have the 

same factor in common with m, since otherwise we could reduce the value of m, at 
least after multiplying a by a suitable root of unity. Now if one of the differences is 
prime to m, then we may number the P's so that (12 -11 , m) = 1. We then divide 
a by l, making 11 = 0 and (12, m) = 1 for the new a obtained. Choosing so that 
j12 1 (mod m), and replacing v by i', we reduce a to an equivalent form with 
11 = 12 = 1. 

Can it happen that none of the differences is - Ir is prime to m? This is clearly 
impossible if m is a prime power, and we shall show that it is also impossible if m 
has only two distinct prime factors p and q (without all the differences having the 
same factor in common with m). Indeed, suppose that each difference 14 - l is 
divisible by p or by q, although not all by q. We shall prove that is= ir (mod p). If 
this is not the case, then 18 =ir (mod q). Choose any ltt # 4r (mod q). Then also 
1$# is (mod q). Hence l, ir (mod p) and 1l, 1i (nod p), so 18, 4, (mod p). 
That is, all the differences are divisible by p. Thus when m has at most two distinct 
prime factors, we may always suppose that 11 = 0, 12 = 1. 

In the most general case, we have m = pialp2a2 ... ptat. By the same argument 
just used, not all of the differences is - ir can be divisible by pi or P2 . Thus we may 
number the P's so that (12 -11 , m) is a divisor k of p3a3 . . . ptat. We then divide 
a by All, making 11 = 0 and (12, m) = k for the new a obtained. Choosing j so that 
j12 k (mod m) and (j, m) = 1, and replacing v by t', we reduce a to an equivalent 
form with 11 = 0, 12 = k. Thus we need only consider numbers a of the form 

as = 1 + Pk + t 13 + . . . + t)In 

where k I P3a3 
. . . 

pta that is, where k may be restricted to being a divisor of the 
number obtained from m by deleting any two prime powers from its canonical 
factorization. 

Can we put some restrictions on the other exponents? It is convenient to start 
by allowing each 4r to vary over the interval [k/2, m + k/2]. Then, since the terms 
may be permuted, we may suppose that 13 _ 14 ?_ ? 1,. Furthermore, since 

tka(-1) = 1 + ok + tm+k-13 + ?+ M+k In, 
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we can replace each 4, by its complement m + k - lr. The complements are, of 
course, in reverse order. Thus we may suppose that 13 + In < m + k, since otherwise 
13 + In would be reduced by taking complements. In order for this inequality to be 
possible, we must have 213 < m + k. Thus it is sufficient to consider the cases 

?< 113< <_ 14 _ <_ m + k-13 
2 2 ~l?4 l? ~ 3 

We may still impose the condition (k, 13 . , l,/) = 1, which eliminates some 
cases if k > 1. We may also omit cases where two exponents differ by m/2, since, 
in such a case, two terms will cancel. Finally, if two exponents differ by m/3, then we 

1 lm/3 1?2?,/ 
may use the identity 

g 
+ = - rn/3 to reduce the number of terms. But to 

eliminate the minus sign, we need an even m. Thus, in this case, we decrease n by 
one unit at the possible expense of doubling m. 

4. Summary of Results. The cyclotomic integers with a1 a 11 < V/5 obtained 
by the calculation described in. ?3 were combined with those given by the formulas 
of ?2 to obtain as complete a list as possible. Duplicate entries were then eliminated, 
so that the resulting numbers are inequivalent. 

We first summarize the cyclotomic integers found with 11 a 11 < 2. Those which 
are the sums of at most two roots of unity are equivalent to terms of the sequence 

a = 2 cosYIN, 

with N = 2, 3, 4, . Here fl a al = a. In any other cases, a fl must have the same 
form. We list in Table 1 the nine cases found, giving 11 a II to five decimals, the cor- 
responding value of N, the number n of roots of unity added, the order m of the roots 
involved, and the exponents of v = e2lri/m in the various terms of a, in the form (or 
one of the forms) which would be obtained by the computation described in ?3. 
Finally, in the last column, we give a number equivalent to this a, but chosen so 
as to be of minimum possible degree over the rational, and of maximum pos- 
sible absolute value. All of the entries in Table 1 except the one on the seventh 
line were actually found among the answers given by the computer. This one, as 
the sum of five 70th roots, was beyond the range of the program. The same number 
can also be written as a sum of six 35th roots, but would also not be found in this 
form. However, after supplying this entry, it seems quite likely that our list is 

TABLE 1 

f11al N n m Exponents Equivalent Value 

1.41421 4 3 7 0, 1, 3 (1 + i/7)/2 
1.41421 4 3 30 0, 1, 12 (V/5 + i/3)/2 
1.73205 6 3 8 0, 1, 3 1 + i/2 
1.73205 6 4 13 0, 1, 3, 9 (3 + /13 + i/(26 - 6V/13))/4 
1.73205 6 4 20 0, 1, 4, 13 (1 + i/5)/ /2 
1.73205 6 5 11 0, 1, 2, 4, 7 (1 + i/11)/2 
1.73205 6 5 70 0, 1,11, 42, 51 (V/5 + iV/7)/2 
1.90211 10 3 20 0, 1, 9 1 + i(V/5 + 1)/2 
1.94986 14 3 42 0, 1, 13 2 cos 2r/7 + (1 + i/3)/2 
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complete. This has been formulated in ?1 as Conjecture 1. 
The following cyclotomic integers were found with If a = 2: 

/(16 -b) + i-\b (b = 0, 12, 3, 5, 6, 7), 2 

(1 + iV7)(V/5 + i/3) oa =, . .. 
4 

Next, with 2 < a 11 < \/5, there are the two sequences 

a = 1 + 2i cos r1N, 

a = V/5 cos 7r/N + i sin r/N, 

with N = 7, 8, 9, * . . In both cases, 

I I a -\= (3 + 2 cos 27r/N) - ( + 4 cos2 r/N). 

However, it is easily seen that the two are equivalent for N = 10 and for N 30, 
so that one of them should be deleted for these values of N. Conjecture 3 states 
that there are no other cases of duplication. For a discussion of this conjecture, 
see ?5. Thirteen other solutions with 2 < 11 a 11 < \5 were found, and are listed in 
Table 2 in order of increasing 11 a fj. In all but two of the cases, 11 a 1J has the same 
form as above, and the corresponding value of N is given. Notice that N has a 
different meaning than in Table 1. The other columns have the same meaning as 
in Table 1. In the two cases where 11 a 11 does not have the usual form, its value is 
/((5 + /13)/2) and (A/7 + Va3)/2, respectively; in the latter case, a is, in fact, 

equivalent to (V7 + V/3)/2. Conjecture 4 states that these are the only possible 
additional values for 1f a 11 in this range. 

Finally, we list the cases with 11f a 11 = \/5 2.23607: 

_V(20-b)+ is\b (b=0,, 3,4,6,7,8, 9), a- 
~~2 

\/(10 + 2V/5) + iV\(10 - 2V/5) a- 2 

TABLE 2 

11all N n m Exponents 

2.06082 7 4 42 0, 1, 6, 19 
2.07431 3 13 0, 1, 4 
2.10100 8 3 24 0, 1, 7 
2.14896 10 4 40 0, 1, 9, 30 
2.14896 10 4 60 0, 3, 5, 38 
2.16391 11 4 11 0, 1, 2, 5 
2.17533 12 4 60 0, 3, 5, 27 
2.18890 4 42 0, 1, 6,18 
2.19133 14 4 28 0, 1, 4,17 
2.21611 21 4 42 0, 1, 5, 18 
2.21788 22 4 66 0, 1, 7, 30 
2.22483 28 4 28 0, 1, 4, 12 
2.22797 33 4 66 0, 1,7, 43 
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Because a number of the solutions with a fl = 2 and a \ = o/5 were beyond 
the range of the computer calculation, we did not venture the conjecture that our 
lists are complete for 11 a 11 V \/5. We did, however, make the weaker Conjecture 2 
that only a finite number of inequivalent solutions were missed. Also, according to 
Conjecture 5, there are no additional values of a expressible as sums of three roots 
of unity. This conjecture would have as consequences that none of the values of a 
which are listed in Tables 1 and 2 as sums of more than three roots of unity could be 
reduced to sums of three roots, that none of the solutions of al = 2, \/5, except 
those equivalent to 2 and 2 + i could be so written, and that the number 
\/5' cos rN + i sin ir/N is riot a sum of three roots of unity except for N = 2, 3, 
5, 10, 30. Thus, if Conjecture 5 is true, this last sequence would furnish infinitely 
many inequivalent numbers a with 11 a 11 < 3 which are not expressible as sums of 
three roots of unity, contrary to a very broad conjecture which I made at the 
Institute in the Theory of Numibers at Boulder in 1959. 

5. Discussion. Besides the question as to whether the results listed in ?4 are 
complete, which I have not been able to answer, there is the question of redundancy. 
Are some two of these numbers, although appearing in different forms, actually 
equivalent? 

It is possible to answer this question in any specific case. For this purpose, we 
need to know what roots of unity lie in the field R (e2iim ). It is easily proved that only 
the mth roots lie in the field when m is even, and just the 24tth roots when m is odd. 
(See, for example, Weiss [4, p. 267].) Now let a and A be cyclotomic integers. Choose 
an even integer m so that a and : both lie in R(e2Tilrt). For 0 to be equivalent to a, 
the latter must have a conjugate ac(' for which f3/aj') is a root of unity. Since this 
would have to be an mth root, there are only a finite number of trials to be made, 
and a decision concerning equivalence can be reached by means of an algebraic calcu- 
lation. However, if i/la(j) is niot an mth root of unity, it is much easier to prove this 
by a numerical calculation. 

We tested the equivalence of corresponding terms of the two sequences 

a = 1 + 2i cos rlN, 

x = V5 cos 7r/N + i sin r/N. 

Both of these are seen to lie in the field of 2ONth roots of unity. It was only necessary 
to compare A with those conjugates of a with maximum absolute value, that is, with 
a and a. In other words, it was sufficient to compute the two quantities 

20N 2 K) 20N \V NJ' 
arc tan 2 cos r, arc tan tan - 

and see whether the fractional parts are either the same or complementary. This 
was found, by a computer calculation, to be false for all N with 3 ? N ? 1000, ex- 
cept for N = 10, 30. This provides strong evidence for Conjecture 3. 

All the other solutions listed in ?4 have been shown to be inequivalent. What we 
needed to do was to compute (m/27r) amp a(j) for all of these numbers and their 
conjugates, with an even value of m chosen so that all of the numbers being com- 
pared lie in R ( e2Ti/m), and to be sure that there are no two cases in which both the 
fractional parts of this multiple of the amplitudes and the absolute values agree. 
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The value of m actually used was 23 335 7*11 13 for those a with 11 a 11 < V5, and 
2'*3v5*7*11*13*17*19 when a = V5. 

In this connection, the following may be noted. Suppose that we are given a 
cyclotomic integer a, and we ask whether it is a sum of two roots of unity. If 
11 a 11 > 2, then this is, of course, impossible. If 11 a 11 = 2, then a can be a sum of two 
roots of unity only by being twice a root of unity. Finally, if a11 < 2, then 
11 a 11=2 cos 'rIN for some N, and a is a sum of two roots of unity only if a is equiva- 
lent to 2 cos w/N, which we can test as above. It was shown that the cyclotoinic 
integers listed in Table 1 are not sums of two roots of unity. 

But what about the question whether a cyclotomic integer a can be expressed 
as a sum of three roots of unity (or of some other prescribed number) ? For example, 
how do we know that the number a = 1 + r + Z + r9 with t = e2ti/13, which 
appeared in Table 1, is not expressible as a sum of three mth roots of unity for some 
m? Again, how do we know that \/5 cannot be expressed as a sum of three roots of 
unity? In both cases, this seems most unlikely, since the computer calculation would 
have found any such representation with m < 240. Conjecture 5 implies a negative 
answer in both cases. The general question was formulated in ?1 as Problem 2. 

Added in proof. Andrzej Schinzel has devised a general method of testing whether 
a given algebraic integer can be expressed as a sum of three roots of unity. In par- 
ticular, he has applied this method to show that \/5 cannot be so expressed. The 
result in this case can also be obtained by checking that II /5 - p II > 2 whenever 
p is a root of unity. 

In ?2, we determined the possible values of 11 a 11 ? 2, and also the possible 
values of 11 a 11 for cyclotomic integers which lie, with their conjugates, in 
1 ? I z I S \/5. What other values 11 a 1H < V/5 are possible? As stated in ?4, we 
found two other possible values, V((5 + V/13)/2) and (V\/7 + V3)/2 = 
V/((5 + V21)/2). If someone were to attempt to disprove Conjecture 4, which 
states that there are no other possibilities, an obvious value to consider for 11 a 11 
would be V/((5 + V/17)/2). It would be sufficient to find a cyclotomnic integer 
having this absolute value. Is there such a number? This question is a special case 
of Problem 1. 
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